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Abstract

Human linguistic communication is based on a variety of infer-
ences that we draw from sentences, often going beyond what
is literally said. While there is wide agreement on the basic
distinction between entailments, implicatures, and presuppo-
sitions, their boundaries are continuously being re-drawn and
the status of many inferences remains open. In this paper, we
focus on three inferences of plain and embedded disjunctions,
and compare them with regular implicatures. We investigate
this comparison from the novel perspective of the predictions
of state-of-the-art Large Language Models, using the same ex-
perimental paradigms as recent studies investigating the same
inferences with humans. The results of our best performing
models mostly align with those of humans, both in the large
differences we find between those inferences and regular im-
plicatures, as well as in fine-grained distinctions among differ-
ent aspects of those inferences.
Keywords: disjunction; inference; implicature; large language
models; pragmatics

Introduction
Human linguistic communication is based on a variety of in-
ferences we draw from sentences, often going beyond what
is literally said (Grice, 1975, and much subsequent work).
One of the main results of theoretical approaches to mean-
ing is the discovery of a rich typology of inferences, exhibit-
ing different conversational status and diverging behaviour
in complex sentences. Over the last two decades, experi-
mental work in pragmatics has tested the often subtle pre-
dictions of different theories of these inferences, by compar-
ing them across a variety of tasks and measures with human
participants (Noveck, 2018, and references therein). In re-
cent years, advancements in machine learning have added the
novel perspective of the investigation of these inferences in
non-human language agents such as large language models
(LLMs) in systematic comparison to humans (Gauthier, Hu,
Wilcox, Qian, & Levy, 2020; Warstadt et al., 2020). The
integration of these different perspectives has increased our
understanding of the typology mentioned above. However,
while there is a general consensus regarding the basic dif-
ferences between entailments, implicatures, and presupposi-

tions, their boundaries are continuously being re-drawn, and
the status of many inferences remains open.

In this paper, we focus on three of such inferences, trig-
gered by disjunction (“or”) in different configurations, which
we describe in turn. Firstly, plain disjunctions like (1)
are associated with so-called ‘IGNORANCE’ inferences (II),
suggesting that the speaker is uncertain as to which dis-
junct is true (1-a) and considers each of them possible (1-b)
(Sauerland, 2004, among many others).

(1) This box contains a blue ball or a yellow ball.
a. ⇝ The speaker is not certain that the box con-

tains a blue ball and s/he is not certain that it
contains a yellow ball. UNCERTAINTY

b. ⇝ The speaker deems it possible that the box
contains a blue ball and that it contains a yel-
low ball. POSSIBILITY

Next, when embedded under a universal quantifier as in (2),
disjunctions can give rise to so-called ‘DISTRIBUTIVE’ infer-
ences (DI), suggesting that the property associated with each
disjunct applies to some but not all individuals in the domain
of the quantifier (Sauerland, 2004; Fox, 2007, among others).

(2) Every box contains a blue ball or a yellow ball.
a. ⇝ Not every box contains a blue ball and not

every box contains a yellow ball. NEGATED
UNIVERSAL

b. ⇝ Some box contains a blue ball and some box
contains a yellow ball. DISTRIBUTIVE

Finally, in the scope of a possibility modal as in (3), the re-
sulting inference is called ‘FREE CHOICE’ (FC), conveying
in this case that each of the disjuncts is an open possibility
(Kamp, 1978; Fox, 2007, among others).

(3) This box might contain a blue ball or a yellow ball.
⇝ The box might contain a blue ball and it might con-
tain a yellow ball. FREE CHOICE



These inferences have all been argued to be derived as,
or to result from scalar implicatures (SI) by some theories
(Sauerland, 2004; Fox, 2007; Bar-Lev & Fox, 2020, among
others) and thus, to rely on the same mechanisms as those
deriving regular SIs like the one in (4).

(4) It is possible that this box contains a blue ball.
⇝ It is not certain that the box contains a blue ball.
x IMPLICATURE

Experimental data with human subjects has recently chal-
lenged the standard implicature approach to these inferences.
First, Marty, Romoli, Sudo, and Breheny (2023) show that
all these inferences are more readily derived by speakers than
regular SIs, suggesting that they should be treated differently.
Second, according to traditional implicature accounts like
Sauerland (2004)’s, IGNORANCE and DISTRIBUTIVE infer-
ences are derived in two consecutive steps. For IGNORANCE,
the first step involves deriving the UNCERTAINTY (UNC) part
in (1-a), from which the POSSIBILITY (POS) part in (1-b)
follows; for DISTRIBUTIVE inferences, the first step involves
deriving the NEGATED UNIVERSAL part in (2-a), from which
the DISTRIBUTIVE part in (2-b) follows. However, the results
from Crnič, Chemla, and Fox (2015), Marty, Ramotowska,
Romoli, Sudo, and Breheny (2023) and Degano et al. (2023)
show that the inferences in (1-b) and (2-b) are accessible to
speakers even in the absence of the corresponding inferences
in (1-a) and (2-a), suggesting that the former may arise inde-
pendently of the latter.

Taken together, these findings challenge traditional impli-
cature approaches to IGNORANCE, DISTRIBUTIVE and FREE
CHOICE inferences. They are compatible, on the other hand,
with more recent implicature approaches, sometimes radi-
cally departing from initial assumptions about implicatures,
as well as non-implicature approaches to these inferences,
such as Aloni (2022), which are not committed to similarities
between them and regular SIs and can further derive POSSI-
BILITY and DISTRIBUTIVE inferences without their UNCER-
TAINTY and NEGATED UNIVERSAL counterparts.

This Study
We seek to address whether state-of-the-art LLMs predict the
fine-grained inferences arising from plain and embedded dis-
junctions that we just described and whether they exhibit the
same pattern of results exhibited in the human data. LLMs
have been tested on entailments (Wang et al., 2019, among
others), implicatures (Schuster, Chen, & Degen, 2020; E. Li,
Schuster, & Degen, 2021; Hu, Levy, & Schuster, 2022), and
presuppositions (Jeretic, Warstadt, Bhooshan, & Williams,
2020; Sieker & Zarrieß, 2023; Sravanthi et al., 2024), but
to our knowledge, the cases above have not been looked at
yet.

To assess the abilities of LLMs, we address two ques-
tions. First, we compare their performance to human data
from three experiments in Marty, Romoli, et al. (2023), three
experiments in Degano et al. (2023) and two experiments in

Marty, Ramotowska, et al. (2023). Second, we compare if
LLM predictions align to the same theoretical predictions as
human results, which were compared to the traditional impli-
cature account (TIA), revised implicature account (RIA, Bar-
Lev & Fox, 2020), and non-implicature account (NIA, Aloni,
2022) in the three studies. In particular, in parallel to what
Marty, Romoli, et al. (2023) do with humans, we test whether
the predictions of LLMs for FREE CHOICE, IGNORANCE, and
DISTRIBUTIVE inferences differ from those of regular IMPLI-
CATURES. In addition, following Marty, Ramotowska, et al.
(2023) and Degano et al. (2023), we test whether DISTRIBU-
TIVE and POSSIBILITY inferences can arise also in the ab-
sence of the corresponding NEGATED UNIVERSAL and UN-
CERTAINTY inferences. The predictions tested are summa-
rized in Table 1.

Before moving on to the details of the study, we should
emphasize that the theories above are designed to predict hu-
mans’ linguistic behavior and, as such, they are of course
not directly theories of LLM mechanics. Nonetheless, we
think that using the same experimental paradigms as those
used with humans in experimental pragmatics allows us to
systematically check whether LLMs, as powerful statistical
(fine-tuned) models trained on a lot of textual data, predict the
inferences above in a ‘package’ with regular implicatures, or
distinguish between them in a way that aligns with humans,
thus providing a novel perspective on the debate above.

Table 1: Relevant predictions of the three accounts. ‘IMP’ in-
dicates whether the account predicts the inference in question
to be an IMPlicature; ‘IND’ indicates whether the account
predicts POSSIBILITY and DISTRIBUTIVE inferences to arise
INDependently from the corresponding UNCERTAINTY and
NEGATED UNIVERSAL ones.

FREE CHOICE IGNORANCE DISTRIBUTIVE
Theories IMP IMP IND IMP IND

TIA yes yes no yes no
RIA yes yes yes yes yes
NIA no no yes no yes

Experiments and Data
To assess LLM predictions, we closely replicated the hu-
man experiments’ set-up of the mystery box paradigm from
Degano et al. (2023), Marty, Romoli, et al. (2023) and Marty,
Ramotowska, et al. (2023). In this way, we were able to
directly compare the humans’ performance in these experi-
ments with the LLMs’ performance. Therefore, we first de-
scribe the three human studies.

Human Studies
In all experiments, participants were presented with pictures
of three boxes whose contents were visible and one box
whose content was not visible, the so-called mystery box.



The visible boxes contained one or two colored balls and the
fourth mystery box had a question mark on it. Participants
were instructed that the mystery box always has the same
contents as one of the visible boxes. They were also intro-
duced with two child characters (Sam and Mia). The char-
acters were familiarized with the rule about the mystery box
and, therefore, they could make certain inferences about its
contents. In each trial, the four boxes were presented and a
sentence was uttered by one of the characters. The truth value
of the sentences was manipulated by varying the contents of
the visible boxes. Participants’ task was a two-alternative
forced choice task wherein they had to judge the sentences
as “good” or “bad” given the context and the rule about the
mystery box.

In Marty, Romoli, et al. (2023) (abbreviated “MRo”), all
target trigger sentences were about the mystery box and tested
the robustness of FREE CHOICE (FC), DISTRIBUTIVE (DI)
and IGNORANCE (II) inferences against the robustness of reg-
ular SIs. For our purposes, we selected materials from Exper-
iments 4–6 of Marty, Romoli, et al. (2023) which only con-
tained positive polarity trigger sentences. For FC, the trigger
sentence was of the form “It is possible that the mystery box
contains either a [A] ball or a [B] ball”, where [A] and [B]
are placeholders for different color adjectives (e.g., yellow
and blue); for DI, it was of the form “It is certain that the
mystery box contains either a [A] ball or a [B] ball”; for II, it
was of the form “The mystery box contains a [A] ball or a [B]
ball”; finally, for SI, it was of the form “It is possible that the
mystery box contains a [A] ball”. In the critical trials, trigger
sentences were presented in a TARGET context like the one
in Table 2 (first row), where every visible box contained an
[A] ball and no [B] ball. TARGET contexts were designed so
that the trigger sentence was false if the inference of interest
is present, but true if it is absent. Thus, the more robust a
given type of inference, the more participants should select
the “bad” response option in these trials and, consequently,
the lower the acceptance rate should be.

In Degano et al. (2023) (abbreviated “D”), all target trig-
ger sentences were about the mystery box and were of the
form: “The mystery box contains a [A] ball or a [B] ball”.
There were two target contexts, TARGET-1 and TARGET-2.
TARGET-1 contexts made POSSIBILITY inferences true and
UNCERTAINTY inferences false; TARGET-2 contexts made
both these inference types false (see Table 2, second and
third row). As in MRo study, acceptance rates in these con-
texts were used as a proxy measure for the robustness of
the inferences of interest: the lower the acceptance rate, the
more robust the inference(s). Degano et al. (2023) found
that TARGET-1 contexts yield higher acceptance rates than
TARGET-2 contexts, suggesting that POSSIBILITY inferences
are accessible independently of UNCERTAINTY inferences.

In Marty, Ramotowska, et al. (2023) (abbreviated “MRa”),
target trigger sentences were either about the mystery box or
about the visible boxes. The disjunction in them was embed-
ded either under a NOMINAL or a MODAL universal quantifier.

For the NOMINAL cases, the trigger sentence was of the form
“Every visible box contains a [A] ball or a [B] ball”. For the
MODAL cases, the trigger sentence was of one of two forms:
“The mystery box must contain a A ball or a B ball” (epis-
temic must, Exp. 1) or “[Name] must pick a [A] ball or a [B]
ball” (deontic must, Exp. 2), where [Name] is a placeholder
for a character’s name. Target contexts in this study followed
the same logic as in D study above and applied it to DIS-
TRIBUTIVE inferences: TARGET-1 contexts made NEGATED
UNIVERSAL inferences true and DISTRIBUTIVE inferences
false whereas TARGET-2 contexts made both these inference
types false.

All three studies further contained TRUE and FALSE con-
trol contexts for each target trigger sentence. These con-
texts were similar in composition to the target ones but were
designed so as to make the trigger sentences either true or
false independent of the target inference. Control contexts
served to provide clear baselines for acceptance and rejec-
tion of the target sentences under investigation. Additionally,
all three studies included control trials involving non-target
trigger sentences associated with true and false contexts. Re-
sponses to these trials were used to assess participants’ gen-
eral performance in the task independent of the critical items.

Experiments with LLMs
Materials for the LLM studies were constructed by convert-
ing all selected vignettes from the human studies described
in the previous section to text-based prompts for the LLMs.
That is, the visual stimuli of the boxes were converted to tex-
tual descriptions. For instance, the TARGET-1 context from
Table 2 was represented as shown in Figure 1. General in-
structions, the cover story, the mystery box rule and exam-
ples were prepended to the critical context. An instruction
presenting the answer options “good” and “bad” in random-
ized order was added to each prompt (see Fig. 1).1

Table 2: Example TARGET context in Marty, Romoli, et al.
(2023) and example TARGET-1 and TARGET-1 contexts in
Degano et al. (2023) and Marty, Ramotowska, et al. (2023).
In these examples, [A] is yellow and [B] is blue.

Context Example

TARGET
A A A ?

TARGET-1
A AB A ?

TARGET-2
A AA A ?

1Full materials can be found under:
http://tinyurl.com/4asyhzvv



Figure 1: Example prompt for the LLM experiments. Some parts of the prompt are omitted for brevity (in gray). Boldface
trigger sentence is an example from Degano et al. (2023). Underlined sentence is the mystery box rule. Expressions in curly
braces in gray vary by study. The character name is sampled at random by-trial. The likelihood for the last word (one of “good”
/ “bad”, italicized) is retrieved for scoring the trigger, given the context.

Methods
We tested a broad range of LLMs which are freely accessible
and where retrieval of log probabilities of strings is possi-
ble, selecting different state-of-the-art models so as to cover
models with different architectures, fine-tuning, training data
composition and scale. Specifically, we used the follow-
ing LLMs: text-davinci-003 version of GPT-3.5 (Brown
et al., 2020), Llama-2 (7B, 13B, 70B parameters, base and
chat versions) (Touvron et al., 2023), Mistral-7B (v0.1) and
Mistral-7B-Instruct (v0.2) (Jiang et al., 2023), Mixtral-8x7B
(v0.1) and Mixtral-8x7B-Instruct (v0.1) (MistralAI, 2023),
Pythia (2.8B, 6.9B and 12B parameters, Biderman et al.
(2023)), Phi-2 (Y. Li et al., 2023) and Falcon-7B (Almazrouei
et al., 2023).2

We used the same prompting and scoring strategies for
retrieving predictions from all models for all experiments.
Specifically, we follow the design of human studies previ-
ously described. Human subjects completed training trials
where they learned the experimental task by seeing control
conditions and receiving feedback about correctness of their
responses. We use all control trials with correct answers that
were used in the human training phase as a few-shot prompt
for each main trial for the LLMs. Therefore, each experimen-
tal item i consisted of a prompt Ci (including the instructions
and the cover story description, the few-shot prompt, the crit-
ical item context and the task) and the two answer options
oi j = ti j1 . . . ti jn, j ∈ {“good”, “bad”},n ≥ 1, each consisting
of n tokens (depending on the model’s tokenizer).

We computed an LLM prediction Si for item i via retriev-

2Except for GPT-3.5, all models are open-access. At the time
of submission, the specific model endpoint was discontinued by the
provider OpenAI.

ing the log probability logPLLM(oi j |Ci) of each oi j following
the item prompt, under each LLM, respectively. We used the
average token log probability if an answer option consisted of
multiple tokens:

logPLLM(oi j |Ci) =
1
n

n

∑
l=1

PLLM(oi jl |Ci,oi j<l) (1)

Given the scores for the two answer options, we identified the
LLM prediction for a given item i as the answer option with
the maximal log probability Si = argmax j logP(oi j |Ci).

For control trials where a correct answer existed, we com-
puted accuracy of LLMs by identifying the proportion of
items where the chosen response option was correct. For tar-
get conditions, we computed the acceptance rate predicted
by LLMs as the proportion of trigger sentences for which the
option “good” was chosen (i.e., the LLM assigned higher log
likelihood to this option, given the context). The predicted
acceptance rate was used to assess the closeness of LLM pre-
dictions and human results. Specifically, we computed the
proportion of variance in human data explained by the model
predictions by calculating R2 for the simple linear model re-
gressing human acceptance rates against model predictions,
for each condition of each experiment. Finally, to identify
overall model fit to human results across experiments, we cal-
culated the adjusted R2 (Miles, 2005).3

Results
We first compute the accuracy of all models on the control
trials of each study. We then take the top five models with

3The linear model was human accept.rate ∼
model accept.rate + condition, with seven distinct con-
ditions from the three replicated studies.



Table 3: Average accuracy on control items by source. “L” refers to the Llama-2 model and “Inst.” to Instruct versions of the
models. Boldface indicates highest accuracy among LLMs.

Study Human GPT-3.5 L-70b Mixtral-Inst. Mixtral Mistral-Inst.
MRo 0.89 0.94 0.69 0.74 0.65 0.54

D 0.95 0.72 0.9 0.75 0.53 0.64
MRa 0.94 0.76 0.86 0.71 0.82 0.75

Figure 2: Mean acceptance rate in the target conditions of each study by test case and source (LLMs or humans).

Figure 3: Human acceptance rate averaged over all items in each condition, by trigger type, plotted against model predictions
(points). Lines indicate best linear model fit regressing human data against model predictions.

Table 4: Goodness of fit of model predictions to human results in each study and for each test case, reported as the R2 value
for human data ∼ model data. Overall model fit reports adjusted R2. Higher values are better. Boldface indicates the best
model(s) in each condition.

Study Case GPT-3.5 L-70b Mistral-Inst Mixtral Mixtral-Inst

MRo

FC 0.53 0 0.1 0.1 0.75
DI 0.65 0.97 0.97 0.97 0.97
II 0.95 0.99 0.9 0.44 0.9
SI 0.99 0.95 0.99 0.22 0.99

D UNC vs. POS 0.71 0.91 0 0.9 0.49

MRa Nominal 0.73 0.99 0.99 0.92 0.88
Modal 0.73 0.9 0.66 0.93 0.7

Overall model fit: 0.68 0.66 0.23 0.18 0.42

the highest accuracy and further investigate the performance
of only those models on critical trials. The control accuracy
scores of these selected models are reported in Table 3. Full
results for all models can be found in the repository. This
selection strategy of best models deviated from the design of

human studies where the exclusion criterion for participants
was an accuracy of 0.8 in Degano et al. (2023) and Marty,
Ramotowska, et al. (2023) and 0.7 in Marty, Romoli, et al.
(2023). Table 3 indicates that the performance of LLMs was
above chance (0.5 for a single trial), but it was not consistent



across the studies. Furthermore, with one exception, LLMs
performed worse than humans.

Second, we investigate the robustness of inferences pre-
dicted by the LLMs based on triggers with disjunctions in dif-
ferent configurations, and whether the predicted acceptance
rates were similar to human inference rates. To this end, we
compared the acceptance rates of the target triggers in the
FREE CHOICE, IGNORANCE, DISTRIBUTIVE inference con-
ditions to the acceptance rate of the IMPLICATURE condition
(Fig. 2, left facet, first three facets vs. last facet). Visual in-
spection suggests that some models robustly predicted FC,
DI, II inferences but not SIS (L-70b, Mixtral-Inst.), while
other models were inconsistent with respect to which infer-
ences they predicted. Next, we assess the LLMs’ fit to human
responses via R2. To this end, we considered LLM predic-
tions on both target trigger conditions and control conditions
(acceptance rates for controls are not shown). Comparing
LLM predictions to human inferences, we found that for dif-
ferent inferences, different models best captured human data
in terms of explained variance (see Table 4, MRo results).
Figure 3 (left) indicates that LLMs were less consistent across
triggers with respect to human data in the FC and DI condi-
tions, than in the other two.

Third, we turn to the question of whether LLMs predict that
POSSIBILITY and DISTRIBUTIVE inferences occur together
with their corresponding UNCERTAINTY and NEGATED UNI-
VERSAL inferences. Figure 2 (middle) shows the mean ac-
ceptance rates for the experiment wherein the triggers con-
tained plain disjunctions, investigating IGNORANCE. Vi-
sually, the crucial comparison between the TARGET-1 and
TARGET-2 conditions was borne out in prediction of GPT-
3.5, Llama-70b and both Mixtral models, albeit less for the
base version. Comparing the overall fit of model predictions
to human responses across triggers, we found that Llama-70b
best captured human responses (Table 4, D). Figure 3 indi-
cates that, both Llama-70b and Mixtral performed close to
human data, while Mistral-Instruct did poorly by always ac-
cepting both Target conditions.

Figure 2 (right) shows the mean acceptance rates for the ex-
periment wherein the triggers contained a disjunction embed-
ded under a nominal quantifier or a modal, investigating DIS-
TRIBUTIVE inferences. While human inferences remained
largely unaffected across modal and nominal contexts (left-
most bars, left vs. right facets; cf. Marty, Ramotowska, et al.
(2023)), at least visually, LLM predictions varied more across
contexts (left vs. right facets). Focusing on the critical con-
trast between the TARGET-1 and TARGET-2 conditions, we
found that it was borne out in predictions of all models in the
nominal context, but not for GPT-3.5 and Mistral-Instruct in
the modal context. For other models, the contrast was also
smaller in the modal context. This discrepancy was reflected
in the fit to human data (see Table 4, MRa rows, lower for
modal than for nominal cases for some models). The modal
context also appears to be more noisy than the nominal con-
text in Figure 3.

To summarize the comparison of LLMs to human predic-
tions across studies and conditions, we found that, overall,
GPT-3.5 explained the most variance in human data, closely
followed by Llama-2-70b (Table 4, last row). However, the
fit to human predictions is not perfect and varies depending
on the test conditions, even for the best-performing models.
While Llama-70b did poorly on FC, it was otherwise better
than GPT-3.5 for many other conditions.

Discussion

We tested the predictions of state-of-the-art LLMs with the
main inferences of plain and embedded disjunctions, FREE
CHOICE, DISTRIBUTIVE and IGNORANCE inferences, in
comparison with regular IMPLICATURES. In particular, we
systematically compared the LLM predictions with the hu-
man results of Marty, Romoli, et al. (2023); Marty, Ramo-
towska, et al. (2023) and Degano et al. (2023). In our results,
we find a clear reflection of the large difference found in hu-
mans between regular SIs and FREE CHOICE, IGNORANCE,
and DISTRIBUTIVE inferences in the best performing mod-
els we tested. The predictions of these models are also in
line with the results from human studies showing that POSSI-
BILITY and DISTRIBUTIVE inferences can be present in the
absence of their UNCERTAINTY and NEGATED UNIVERSAL
counterparts.

Overall, we found that LLMs produced different predic-
tions for various types of pragmatic inferences. The results
from the LLM experiments show that the best performing
models mostly align with humans in the fine-grained distinc-
tions between the inferences above and regular implicatures,
as well as on different aspects of those inferences. The re-
sults, like those for humans, are not in line with traditional im-
plicature approaches to those inferences. However, we found
that LLMs still exhibit inconsistencies across various condi-
tions in non human-like ways. There remain open questions
for future explorations, e.g., about the ability of these models
to consistently perform on sentences with modals, as well as
with the counterparts of the sentences above involving nega-
tion, tested in Marty, Romoli, et al. (2023), as it has been
found that LLMs might have issues with negation (Truong,
Baldwin, Verspoor, & Cohn, 2023). Furthermore, it has been
shown that LLMs might be sensitive to superficial aspects
of the prompts, which we would not expect to affect human
performance (Liu et al., 2023); therefore, testing the robust-
ness of such predictions under different prompting strategies
might offer an interesting avenue for future work.
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